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1 NETWORK DETAILS
Figure 3 illustrates the detailed network architectures of each mod-
ule in our framework. Specifically, there are five encoder networks
and two decoder networks. The shadow encoder employs the UNet
architecture, while the others are compact MLP networks. The di-
rect encoder and indirect encoder incorporate a skip connection
following AE [Diolatzis et al. 2022] and NeuralGI [Gao et al. 2022].
Additionally, we provide detailed descriptions of the inputs and
outputs of each module in Table 2.

2 ADDITIONAL RESULTS
Since some results are cropped for better visual comparison in the
main paper, we provide results with full resolution version and error
maps in the supplementary material, which are presented in a web-
based comparison tool following the denoising works [Áfra 2024].
For more dynamic results and generalization results, please refer to
our supplementary video.
To validate our model with challenging scenes featuring multi-

ple freely movable objects, we constructed a scene named Interior
Design. This scene also demonstrates its modeling-while-rendering
application. It consists of 5 pieces of freely movable furniture and 3
area lights. In addition to transformation objects, materials such as
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color and roughness of sofa and wall, as well as the emission of light
source, can also be edited. We show quantitative results in Table 1
and visual comparison in Figure 1. Similarly, our method can out-
perform previous neural rendering methods. However, path tracing
methods produce more accurate results given the high number of
samples per pixel. Dynamic results as well as inter-reflection effects
are showcased in the video.

3 DISCUSSION WITH CLASSIC VPL METHOD
Though our method draws inspiration from classic VPL rendering
framework, the results are quite different. Thanks to our neural
shader, certain artifacts commonly observed in classic VPL method
(e.g., instant radiosity [Keller 1997]) are not shown in our results.
A visual comparision in our Chess-Luminaire scene is illustrated in
Figure 2. We utilized the implementation of VPL rendering in the
Mitsuba renderer [Jakob 2014], with timing measured on RTX 4090.
As can be seen, Instant radiosity (IR) introduces visual artifacts

such as bright blotches. The application of clamping can mitigate
these artifacts, but introducing significant energy loss. This is ev-
ident in the dark areas, especially on the surface of the luminary.
As shown in the second row, a large number of VPLs are required
to achieve visually acceptable results. leading to high timing costs.
In contrast, our method do not suffer from these artifacts and can
achieve real-time performance.

Table 1. Quantitative results of Interior Design scene. Details of comparison
methods can be found in the Table. 1 of the main paper.

Interior Design
Methods Time (ms) ↓ LPIPS ↓ RSE ↓
CNSR [1] 155.74 0.1325 0.0807
AE [2] 120.93 0.0687 0.0303
Ours 107.72 0.0583 0.0070

ONND [3] 38.09 (66spp) 0.0470 0.0124
OIDN [4] 37.99 (57spp) 0.0440 0.0100
Ours (TRT) 38.19 0.0583 0.0070
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Reference Ours AE OIDN

Fig. 1. Visual comparison results of Interior Design scene. Our method can generate visually plausible global illumination results, even with multiple freely
movable objects. The high-frequency shading details are hard to be captured in previous neural rendering methods.

Ours (23ms) IR (8192VPLs, 23s, clamping=0)

IR (2048VPLs, 6s, clamping=0.3) IR (8192VPLs, 23s, clamping=0.3)

Fig. 2. Visual comparison with classic VPL rendering method (Instant Ra-
diosity) and our method. Our result do not suffer from light leak (bright
blotches) and the visible energy loss (dark areas) caused by clamping.
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Fig. 3. The architectures of encoder and decoder networks of LightFormer.

Table 2. Detailed inputs and outputs of our networks. The number in the bracket indicates image channels or the length of feature vector.

Network Input Output

Direct VPLs Encoder position(3) + normal(3) + power(3) direct light embedding(256)
Indirect VPLs Encoder position(3) + normal(3) + flux(3) indirect light embedding(512)
Light Direction Encoder light direction(3) light direction embedding(32)
Half Vector Encoder half vector(3) half vector embedding(32)
Shadow Encoder shadow clues((𝑑 - 𝑑𝑓 ) (1), (𝑑 / 𝑑𝑓 ) (1), 𝑐𝑒 (1), 𝑐𝑐 (1), posi-

tion(3) )
shadow embedding(8)

Direct Decoder GBuffers(position(3) + normal(3) + albedo(3) + spec-
ular(3) + roughness(1)) + composed direct light em-
bedding(256) + composed half vector embedding(32) +
composed light direction embedding(32) + composed
shadow embedding(8)

direct shading(3) , direct shadow(3)

Indirect Decoder GBuffers(position(3) + normal(3) + albedo(3) + specu-
lar(3) + roughness(1)) + composed indirect light em-
bedding(512)

indirect shading(3)
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